New method for the synthesis of 2-substituted N,N'-diacylimidazolidines

G. V. Pokhvisneva* and O. A. Luk'yanov

N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 117913 Moscow, Russian Federation. Fax: +7 (095) 135 5328. E-mail: 1480@suearn2.bitnet

A method for the synthesis of 2-substituted N, N'-diacylimidazolidines was developed. The method is based on the reactions of acylating reagents (carboxylic acid chlorides and anhydrides, sulfonic acid chlorides, a carbamic acid chloride, and ethyl chlorocarbonate) with Schiff's bases prepared by the reaction of N-acylethylenediamines with aldehydes.

Key words: N, N'-diacylated imidazolidines. Schiff's bases, acylation, cyclization, acid chlorides.

In continuation of the studies into the synthesis of N, N'-diacylated imidazolidines (DAI) from N-monoacylated derivatives of ethylenediamine¹ (EDA) 1, we developed a new method for the preparation of 2-substituted DAI 2. Earlier, 2,3 some of the imidazolidines 2 (but only those with two identical acyl groups) were synthesized by the reaction of acid halides with Schiff's bis-

bases based on EDA. The new, much more general method proposed here allows one to obtain compound 2 containing both identical and different acyl fragments in various combinations. According to our method, the title compounds result from the reactions of acylating reagents with Schiff's bases 3 prepared from amines 1 and aliphatic or aromatic aldehydes 4 (Scheme 1, Table 1).

Table 1. Yields, physicochemical constants, and ¹H NMR spectral parameters for N-acyl-N'-alkylidene(arylidene)ethylenediamines $R^{1}NHCH_{2}CH_{3}N=CHR^{2}$ (3a-i)

Com- pound	R [†]	R ²	Yield (%)	M.p. /° C	¹ H NMR (CDCl ₃), δ (J/Hz)
За	EtCO	p-Me ₂ NC ₆ H ₄	65	120122	1.15 (t, 3 H, Me, $J = 6.2$); 2.0 (q, 2 H, CH ₂ , $J = 6.2$); 3.00 (s, 6 H, 2 Me); 3.52-3.70 (m, 4 H, 2 CH ₂); 6.05 (br.s, 1 H, NH); 6.70, 7.60 (both d, each 2 H, H arom., $J = 8.6$); 8.15 (s, 1 H, CH)
3b	Bz	p-Me ₂ NC ₆ H ₄	72	7375	3.03 (s. 6 H, 2 Me); 3.80 (br.s, 4 H, 2 CH ₂); 6.70—7.75 (m, 9 H, H arom.)
3s	Ts	\mathbf{Pr}^{i}	83	a	0.95-1.05 (m, 6 H, 2 Me); 2.10 (m, 1 H, CH); 2.45 (s, 3 H, Me); 2.85-3.35 (m, 4 H, 2 CH ₂); 4.35 (d, 1 H, CH, $J = 6.5$); 7.30, 7.70 (both d, each 2 H, H arom, $J = 8.3$); 7.35 (br.s, 1 H, NH)
3d	Ts	Ph	74	9899	2.45 (s, 3 H, Me); 3.30-3.65 (m, 4 H, 2 CH ₂); 4.90 (br.s, 1 H, NH); 7.30-7.65 (m, 9 H, H arom.); 8.20 (s, 1 H, CH)
3e	Ts	m-MeOC ₆ H ₄	61	4446	2.45 (s, 3 H, Me); 3.30, 3.60 (both t, each 2 H, 2 CH_2 , $J = 5.4$); 3.75 (s, 3 H, MeO); 4.9 (br.s, 1 H, NH); 7.20–7.70 (m, 8 H, H arom.); 8.20 (s, 1 H, CH)
3f	Ts	p-Me ₂ NC ₆ H ₄	83	120-122	2.45 (s, 3 H, Me); 3.05 (s, 6 H, 2 MeN); 3.30, 3.60 (both t, each 2 H, 2 CH ₂ , $J = 5.4$); 4.9 (br.s. i H, NH); 6.70, 7.25, 7.50, 7.75 (all d, each 2 H, H arom., $J = 8.5$); 8.05 (s, 1 H, CH)
3g	Ts	m-NO ₂ C ₆ H ₄ ^b	73	103105	2.45 (s. 3 H, Me); 3.10, 3.65 (both t, each 2 H, 2 CH_2 , $J = 6.5$); 7.32 (d, 2 H, H arom $J = 8.4$); 7.65–8.25 (m, 5 H, H arom.); 8.35 (s, 1 H, SH); 8.50 (s, 1 H, H arom.)
3h	Ts	<i>p</i> -NO ₂ C ₆ H ₄ ^d	77	144146	2.45 (s, 3 H, Me); 3.10, 3.65 (both t, each 2 H, 2 CH ₂ , $J = 6.5$); 7.35, 7.65 (both d, each 2 H, H arom., $J = 9.0$); 7.95–8.25 (both d, each 2 H, H arom., $J = 9.6$); 8.35 (s, 1 H, CH) ^c
3i	m-O ₂ NTs	Pr ⁱ	85	a	0.95—1.05 (m, 6 H, 2 Me); 2.15 (m, 1 H, CH); 2.65 (s, 3 H, Me); 2.85—3.45 (m, 4 H, 2 CH ₂); 4.40 (d, 1 H, CH, $J = 6.9$); 7.50 (s, 1 H, NH); 7.55, 7.95 (both d, each 1 H, H arom., $J = 8.6$); 8.40 (s, 1 H, H arom.)

[&]quot; Oil

^b Found (%): C, 55.38; H, 4.90; N, 12.26; S, 8.96. C₁₆H₁₇N₃O₄S. Calculated (%): C, 55.32; H, 4.90; N, 12.10; S, 9.23.

^c The spectrum was recorded in DMSO-d₆.

^d Found (%): C, 55.44; H, 5.04; N, 12.19; S, 8.90. C₁₆H₁₇N₃O₄S. Calculated (%): C, 55.32; H, 4.90; N, 12.10; S, 9.23.

Scheme 1

$$R^{1}NHCH_{2}CH_{2}NH_{2}$$

$$R^{1}NHCH_{2}CH_{2}NH_{2}$$

$$R^{2}CHO$$

$$R^{1}NHCH_{2}CH_{2}N=CHR^{2}$$

$$R^{2}CHO$$

$$R^{1}NHCH_{2}CH_{2}N=CHR^{2}$$

$$R^{2}CHO$$

$$R^{3}NHCH_{2}CH_{2}N=CHR^{2}$$

1: R¹ = EtCO (a), Bz (b), Ts (c), m-O₂NTs (d) 4: R² = Pr¹ (a), Ph (b), m-MeOC₆H₄ (c), \(\rho\)-Me₂NC₆H₄ (d), \(\rho\)-Mo₂C₆H₄ (f) 3: R¹ = EtCO (a), Bz (b), Ts (c-h), m-O₂NTs (i);

 $R^2 = \rho - Me_2NC_6H_4$ (a, b, f), Pr'(c, i), Ph(d), $m - MeOC_6H_4$ (e), $m - NO_2C_6H_4$ (g), $\rho - NO_2C_6H_4$ (h) (see Table 1)

The acyl substituents were propionyl, benzoyl, tosyl, and m-nitrotosyl. Isobutyraldehyde, benzaldehyde, m-and p-nitrobenzaldehyde, m-methoxybenzaldehyde, and p-dimethylaminobenzaldehyde were used as the starting aldehydes.

The structure of compounds 3 was mainly confirmed by ¹H NMR spectroscopy. Analytically pure samples of 3 were not obtained, except for products 3g.h, because most of the azomethines 3 are unstable and partially decompose during purification. Yields, melting points, and ¹H NMR spectral data for compounds 3a—i are presented in Table 1.

It was established that the reaction of organic acid chlorides 5 with Schiff's bases 3 in the presence of 1 equiv. of Et₃N usually yields a cyclization product, DAI 2 (Scheme 2, Table 2).

Scheme 2

$$R^{1}NHCH_{2}CH_{2}N=CHR^{2} \xrightarrow{\begin{array}{c} R^{3}Ci \\ 5a-1 \end{array}} R^{1}-N N-R^{3}$$

$$3a-i \qquad \qquad 2a-z R^{2}$$

5: $R^3 = Ac$ (a), EtCO (b), CICH₂CO (c), PhOCH₂CO (d), Bz (e), ρ -NO₂C₆H₄CO (f), 3.5-di(methylthio)isothiazol-4-yi-carbonyl (g), 1-piperidinocarbonyl (h), EtOCO (i), Ms (j), PhSO₂ (k), Ts (l)

2: $R^1 = EtCO(a)$, Bz(b, c), Ts(d-y), $m-O_2NTs(z)$;

 $R^2 = \rho - Me_2NC_6H_4$ (a—c, x, y), Pr^i (d—m, z), Ph (n—u), $\rho - NO_2C_6H_4$ (v), $m - MeOC_6H_4$ (w);

 R^3 = Ts (a, c, m, u-w, y), Bz (b, g, q, z), Ac (d, x), EtCO (e, n), ClCH₂CO (f, o), ρ -NO₂C₆H₄CO (h), 3.5-di(methylthio)isothiazol-4-ylcarbonyl (i), EtOCO (j), Ms (k, s), PhSO₂ (l, t), PhOCH₂CO (p), 1-piperidino-carbonyl (r) (see Table 2)

In our experiments, the acylating reagents were carboxylic acid (aliphatic, aromatic, and heterocyclic) chlorides, sulfonic acid chlorides, carbamic acid chlorides, and ethyl chlorocarbonate. Most of the reactions were carried out in acetonitrile. However, a few reactions conducted in benzene gave similar results. DAI 2 can be synthesized from azomethines 3 (which are formed in situ in acetonitrile) by treating this solution with Et₃N

and acid chloride 5. This approach is advisable with oily compounds 3, e.g., 3c.i. The yields and some characteristics of DAI 2 are given in Table 2.

The compounds obtained were characterized by elemental analysis and H NMR spectroscopy. The H NMR spectra show signals from four protons of DAI in positions 4 and 5, one proton in position 2, and the protons of the corresponding substituents R1, R2, and R^3 . For $R^2 = Pr^i$, the protons of DAI in position 2 usually appear as doublets at 5.0-6.5, while for $R^2 =$ Ar, they are singlets in the range from 6.5 (for sulfonamides) to 7.0-7.5 (for carboxamides). When R^1 or R^3 are aliphatic carboxyl radicals, the protons of DAI in position 2 show themselves as two singlets of different intensity for $R^2 = Ar$ (compounds 2a, n, o, x) and, correspondingly, two doublets for $R^2 = Pr^1$ (compounds 2d.e.f). The protons of acyl substituents also exhibit two sets of signals. Although this phenomenon caused by rotational isomerism is known both for aliphatic and aromatic amides, the spectra of compounds 2 containing aroyl groups show no doubling of the corresponding signals. Probably, this can be attributed to steric factors, i.e., the presence of a bulky aromatic ring makes the formation of the second isomer unfavorable. ¹H NMR spectral parameters for compounds 2a-z are presented in Table 3.

The nature of acyl substituent R1 in azomethine 3 has almost no influence on the course of the reaction with acylating reagents. The reactivity of compound 3 is mainly determined by the character of substituent R2. For $R^2 = Alk$, the compounds easily react with various acid chlorides at room temperature to give DAI. The reactivity of azomethines 3 with an aromatic R² is decreased. In particular, compound 3d reacts with carboxylic acid chlorides at ~20 °C, while in the case of sulfonic and carbamic acid chlorides, heating is required. The character of substituents in the aromatic ring of R² is significant. The presence of electronreleasing groups in both meta- (3e) and para-positions (3a,b.f) hardly influences the course of reaction, whereas strong electron-withdrawing substituents appreciably hinders the formation of DAI 2. For example, azomethine 3h reacts with TsCl and Et₃N in boiling acetonitrile to give product 2v only in 10% yield, and compound 3g affords no corresponding DAI at all. In both cases, N, N'-bistosylethylenediamine was formed in ~60% yield. In the other reactions, N, N'-diacylated EDA was detected in trace amounts or not at all.

Although compounds 3c,i bearing an aliphatic R^2 react with acid chlorides more vigorously, N,N'-diacylated EDA are also formed in some amounts, probably, because of the lower stability of these azomethines.

Apart from the reactions with acid chlorides, several reactions of compounds 3 with anhydrides were carried out. It was shown that the reactions of azomethines 3c,f with Ac₂O in acetonitrile at room temperature result in the corresponding DAl 2d,x in high yields (Scheme 3).

Table 2. Yields and physicochemical constants of 2-substituted DAI 2a-z R¹-

							Ř ²			
Con pou		\mathbb{R}^2	R³	Yield (%)	M.p. /C		Found (%) Calculated			Molecular formula
						C	Н	N	S	
2a	EtCO	p-Me ₂ NC ₆ H ₄	Ts	59	157159	62.63 62.83	6.81 6.78	10.89 10.47	7.78 7.98	C ₂₁ H ₂₇ N ₃ O ₃ S
2b	Bz	p-Me ₂ NC ₆ H ₄	Bz	74	170-172	75.11 75.15	6.51 6.31	-		$C_{25}H_{25}N_3O_2$
2c	Bz	p-Me ₂ NC ₆ H ₄	Ts	85	158160	66.34 66.79	6.09 6.06	<u>9.60</u> 9.35	7.13 7.12	$C_{25}H_{27}N_3O_3S$
2d	Ts	Pr^{i}	Ac	58ª	140142	57.66 58.04	7.00 7.14	ر ــــ	10.52 10.33	$C_{15}H_{22}N_2O_3S$
2e	Ts	Pr ⁱ	EtCO	56	99-101	58.81 59.23	7.08 7.46		9.52 9.88	$C_{16}H_{24}N_2O_3S$
2f	Ts	Pri	CICH ₂ CO	42	129-131	52.14	<u>6.35</u>	-	9.05 * 9.30	$C_{15}H_{21}CIN_2O_3S$
2g	Ts	Pr^{ι}	Bz	54	110111	52.24 64.00	6.14 6.75	7.65 7.52	8.12	$C_{20}H_{24}N_2O_3S$
2h	Ts		-NO₂C ₆ H₄CO Me\$CO	49	139—141	64.49 <u>57.32</u> 57.54	6.49 <u>5.54</u> 5.55		8.61 <u>7.86</u> 7.68	$C_{20}H_{23}N_3O_5S$
2i	Ts	Pr ⁱ	Nes CO N S SMe	80	155—157	<u>48.46</u>	<u>5.49</u>		<u> 26.63</u>	$C_{19}H_{25}N_3O_3S_4$
2j	Ts	Pr ⁱ	EtOCO	45	60-62	48.38 56.54	5.3 4 7.31	8.31	27.19 <u>9.43</u>	C ₁₆ H ₂₄ N ₂ O ₄ S
2k	Ts	$\mathbf{P}r^{i}$	Ms	47	143—146	56.45 48.23	7.11 6.31	8.23	9.45 <u>18.62</u> 18.51	C ₁₄ H ₂₂ N ₂ O ₄ S ₂
21	Ts	$\mathbf{P}r^{\mathrm{i}}$	${\tt PhSO}_2$	52	9294	48.53 56.00	6.40 <u>6.12</u>		15.33 15.68	$C_{19}H_{24}N_2O_4S_2$
2m	Ts	\mathbf{Pr}^{i}	Ts	59	138-140	55.87 <u>56.39</u> 56.84	5.93 <u>6.01</u> 6.20	6.22 6.63	14.83 15.17	$C_{20}H_{26}N_2O_4S_2$
2n	Ts	Ph	EtCO	59	123-124	63.78 63.66	5.97 6.12		9.05 8.93	$C_{19}H_{22}N_2O_3S$
20	Ts	Ph	CICH ₂ CO	58	145—148	57.00 57.06	5.02 5.05		8.46 ° 8.46	$C_{18}H_{19}C1N_2O_3S$
2 p	Ts	Ph	PhOCH ₂ CO	25	159161	66.06 66.04	5.62 5.54	-	7.30 7.34	$C_{24}H_{24}N_2O_4S$
2q	Ts	Ph	Вz	60	166-168	67.49 67.97	5.83 5.46	6.57 6.89	7.84 7.89	$C_{23}H_{22}N_2O_3S$
2r	Ts	Ph	NCO	53	136-138	<u>63.58</u>	6.97	_	7.50	C ₂₂ H ₂₇ N ₃ O ₃ S
2s	Ts	Ph	Ms	53	134136	63.90 <u>53.65</u> 53.67	6.58 5.04 5.30	-	7.75 16.36 16.85	$C_{17}H_{20}N_2O_4S_2$
2t	Ts	Ph	${\tt PhSO}_{\underline{2}}$	64	145147	60.22 59.71	5.18 5.01	-	14.08 14.49	$C_{22}H_{22}N_2O_4S_2$
2u	Ts	Ph	Ts	68	134-136	60.22 60.51	5.11 5.30		13.95 14.04	$C_{23}H_{24}N_2O_4S_2$
·2v	-Ŧs	P-NO2C6H4	·-Ts	. 10	199-200	54.64 55.08	4.77 4.62		12.37 12.78	C ₂₃ H ₂₃ N ₃ O ₆ S ₂
2w	Ts	m-MeOC ₆ H ₄	Ts	47	112114	58.83 59.24	5.06 5.39		12.82 13.18	$C_{24}H_{26}N_2O_5S$
2x	Ts	p-Me ₂ NC ₆ H ₄	Ac	67. 65"	157159	61.59 61.99	6.12 6.50	~	8.63 8.27	$C_{20}H_{25}N_3O_3S$
2y	Ts	p-Me ₂ NC ₆ H ₄	Ts	69	174-176	60.35 60.10	5.83 5.85	8.55 8.41	12.81 12.83	$C_{25}H_{29}N_3O_4S_2$
2z	m-O ₂ NTs	Pr ⁱ	Bz	46	161-163	57.19 57.54	5.54 5.55		7.65 7.68	$C_{20}H_{23}N_3O_5S$

^a In the reaction with Ac₂O.
^b Found: Cl, 9.92%. Calculated: Cl, 9.25%.
^c Found: Cl, 9.23%. Calculated: Cl, 9.25%.

Table 3. ¹H NMR spectra (in CDCl₃) of 2-substituted DAI 2a-z

Com-	δ (<i>J</i> /Hz)								
pound	CH ₃	CH ₂	СН	H arom.					
2a	1.00 (m, 3 H): 2.40 (s, 3 H): 2.95, 2.98 (both s, each 3 H, 2 MeN)	1.70—2.00 (m, 2 H); 3.40—4.00 (m, 4 H)	6.30, 6.50 (both s, 1 H)	6.70-7.80 (m, 6 H)					
2b	3.00 (s. 6 H, 2 MeN)	3.85-4.50 (m, 4 H)		6.70 (d, 2 H, J = 10.0); 7.35-7.45 (m, 13 H, CH + H arom.)					
2c	2.45 (s, 3 H); 3.00 (s, 6 H, 2 MeN)	3.45-3.90 (m. 4 H)	6.50 (s, 1 H)	6.70—7.80 (m, 14 H)					
2d	1.00 (m, 6 H): 1.55, 1.90 (both s, 3 H); 2.45 (s, 3 H)	2.70-3.90 (m, 4 H)	1.95 (m, 1 H); 5.05, 5.50 (both d, 1 H, J = 9.7)	7.30, 7.70 (both d, each 2 H. $J = 10.3$)					
2e	0.95—1.05 (m, 9 H); 2.45 (s, 3 H)	1.55—1.96 (m. 2 H); 2.80—3.90 (m. 4 H)	1.95 (m, 1 H); 5.10, 5.50 (both d, 1 H, $J = 8.9$)	7.25, 7.70 (both d, each 2 H. $J = 11.1$)					
21	1.00 (br.s, 6 H): 2.45 (s, 3 H)	2.85-3.95 (m, 6 H)	2.00 (m, 1 H); 5.15, 5.50 (both d, 1 H, J = 9.1)	7.30, 7.70 (both d, each 2 H $J = 10.0$)					
2g	1.05—1.15 (m. 6 H); 2.45 (s, 3 H)	2.85-3.85 (m, 4 H)	2.05 (m, 1 H); 6.85 (d, 1 H, $J = 9.2$)	7.10—7.75 (m, 9 H)					
2h	1.05—1.15 (m, 6 H); 2.45 (s, 3 H)	2.75-3.90 (m, 4 H)	2.00 (m, 1 H); 5.80 (d, 1 H, $J = 9.2$)	7.25, 7.35, 7.75, 8.50 (all d, each 2 H, $J = 10.0$)					
2i	1.10 (m, 6 H); 2.40 (s, 3 H); 2.53, 2.57 (both s, each 3 H, 2 MeS)	3.00-3.60 (m, 4 H)	2.25 (m, 1 H, CH); 5.75 (d, 1 H, J = 5.6)	7.35, 7.80 (both d, each 2 H $J = 11.0$)					
2ј	1.00 (m, 6 H); 2.45 (s, 3 H)	2.80—3.90 (m, 6 H)	1.90 (m, 1 H); 5.20 (m, 1 H)	7.25, 7.70 (both d, each 2 H, $J = 9.0$)					
2k	1.00 (m, 6 H); 2.45 (s, 3 H); 2.75 (s, 3 H, MeS)	3.50-3.75 (m, 4 H)	2.10 (m, 1 H); 5.20 (d, 1 H, $J = 6.7$)	7.40, 7.80 (both d, each 2 H, $J = 9.2$)					
21	1.00 (m, 6 H); 2.45 (s, 3 H)	3.30 (m, 4 H)	2.25 (m. 1 H); 5.30 (d. 1 H, J = 5.7)	7.25—7.75 (m, 9 H)					
2m	1.00 (d, 6 H, $J = 7.3$); 2.45 (s, 6 H)	3.30 (m. 4 H)	2.30 (m, 1 H); 5.30 (d, 1 H, J = 5.6)	7.30, 7.55 (both d, each 4 H, $J = 10.0$)					
2n	1.00 (m, 3 H); 2.45 (s, 3 H)	1.70—2.00 (m, 2 H); 3.00—4.00 (m, 4 H)	6.40, 6.70 (both s, I H)	7.25—7.80 (m, 9 H)					
2o	2.45 (s, 3 H)	3.15-4.00 (m, 6 H)	6.55, 6.80 (both s, 1 H)	7.30-7.75 (m, 9 H)					
2p	2.45 (s, 3 H)	3.20-4.40 (m. 6 H)		6.75—7.80 (m, 15 H, CH + H apom.)					
2q	2.45 (s, 3 H)	3.05-3.90 (m, 4 H)		6.35—7.80 (m, 15 H, SH + H apom.)					
2г	2.45 (s. 3 H)	1.30-1.60 (m, 6 H); 3.00-3.70 (m, 8 H)	6.60 (s, 1 H)	7.40—7.75 (m, 9 H)					
2s	2.45 (s, 3 H); 2.75 (s, 3 H, MeS)	3.45 (m, 4 H)	6.40 (s, 1 H)	7.407.80 (m, 9 H)					
2t	2.45 (s, 3 H)	3.45 (m, 4 H)	6.40 (s, 1 H)	7.30-7.70 (m, 11 H)					
2u	2.45 (s, 6 H)	3.42 (s. 4 H)	6.40 (s, 1 H)	7.30-7.60 (m, 13 H)					
2v	2.45 (s, 6 H)	3.45 (s, 4 H)	6.40 (s, 1 H)	7.30-8.20 (m, 12 H)					
2w	2.45(s, 6 H); 3.75 (s, 3 H, MeO)	3.45 (m, 4 H)	6.40 (s, 1 H)	6.857.60 (m, 12 H)					

(to be continued)

Table 3. (continued)

Com-	δ (J/Hz)							
pound	CH ₃	CH₂	СН	H arom.				
2x	1.70, 1.90 (both s, 3 H); 2.45 (s, 3 H); 2.94, 2.97 (both s, each 3 H, 2 MeN)	3.20—4.00 (m, 4 H)	6.30, 6.75 (both s, 1 H)	6.65-7.80 (m, 8 H)				
2y	2.45 (s. 6 H); 2.95 (s. 6 H, 2 MeN)	3.45 (s. 4 H)	6.32 (s, 1 H)	6.65-7.60 (m, 12 H)				
2z	1.10 (m, 6 H); 2.72 (s. 3 H)	3.00-3.85 (m. 4 H)	2.00 (m, 1 H, CH); 5.85 (d, 1 H, J = 10.0)	7.15-8.42 (m. 8 H)				

Scheme 3

TsNHCH₂CH₂N=CHR²
$$\xrightarrow{Ac_2O}$$
 Ts-N-COMe
3c,f 2d,x R²
R² = Pr (3c, 2d), ρ -Me₂NC₆H₄ (3f, 2x)

These compounds are also formed in close yields in the reactions of azomethines 3c,f with acetyl chloride.

The use of functionalized acylating reagents extends the possibilities for the synthesis of DAI because functional groups can be involved in reactions (e.g., according to Scheme 4).

Scheme 4

Thus, the method developed can be recommended for the preparation of various 2-substituted DAI.

Experimental

¹H NMR spectra were recorded on a Bruker AM-300 instrument. Melting points were determined on a Koffer stage. Before use, commercial solvents and reagents were distilled or recrystallized. The starting N-monoacylated EDA 1 was prepared according to the known procedures.^{4,5}

N-Acyl-N'-alkylidene(arylidene)ethylenediamines (3a-i) (general procedure). Aldehyde 4 (1 mmol) was added to a solution of compound 1 (1 mmol) 1 in 3-5 mL of EtOH. The reaction mixture was kept at 20 °C for 1 h and then allowed to stand overnight at -10 °C. The precipitate that formed was filtered off; azomethines 3c and 3i were isolated as oils upon removing the EtOH in vacuo.

N,N'-Diacyl-2-arylimidazolidines (2a-c,n-y) (general procedure). Et₃N (1 mmol) and a corresponding acylating reagent (1 mmol) were added to a solution (or suspension) of com-

pound 3 (1 mmol) in 5 mL of anhydrous MeCN. The reaction mixture was stirred at 20 °C for 2—6 h or refluxed for 1—2 h and then diluted with water. The precipitate that formed was filtered off, dried in air, and purified by recrystallization from EtOH or by preparative TLC with a 4:1 PhH—Me₂CO mixture as an eluent. Compound 2j was reprecipitated with hexane from ether.

N,N'-Diacyl-2-isopropylimidazolidines (2d-m,z) (general procedure). Isobutyraldehyde (1 mmol) was added to a solution of N-tosylethylenediamine (1 mmol) in 5 mL of anhydrous MeCN. The reaction mixture was kept at 20 °C for 1 h. After Et₃N (1 mmol) and a corresponding acylating reagent (1 mmol) were added, the synthesis was carried out as described above.

Reactions of azomethines 3 with Ac_2O . Ac_2O (1.2 mmol) was added to a solution (or suspension) of compound 3 (1 mmol) in 5 mL of anhydrous MeCN. The reaction mixture was kept at 20 °C for 1 h and then treated as described above.

2-Phenyl-1-*N*-piperidinoacetyl-3-tosylimidazolidine (6). A solution of DAI 20 (0.54 g, 1.4 mmol) and piperidine (0.3 mL, 0.26 g, 3.0 mmol) in 5 mL of benzene was refluxed for 3 h. Then, the reaction mixture was cooled, washed with water, dried over Na₂SO₄, and concentrated; an oily residue crystalized upon trituration with ether. The precipitate that formed was filtered off, washed with ether, and dried in air to give compound 6 (0.47 g, 77%), m.p. 99—101 °C. Found (%): C, 64.65: H, 6.85; N, 9.63; S, 7.05. $C_{23}H_{29}N_3O_3S$. Calculated (%): C, 64.61: H, 6.84: N, 9.83; S, 7.48. ¹H NMR (CDCl₃), δ : 1.40 (m, 2 H, C—CH₂—C): 1.55 (m, 4 H, 2 C—CH₂—C); 2.20—2.35 (m, 4 H, 2 CH₂N); 2.42 (s. 3 H, Me); 2.70—3.90 (m, 6 H, 3 CH₂N); 6.80, 7.06 (both s, 1 H, CH): 7.25—7.80 (m, 7 H, H arom.).

References

- O. A. Luk'yanov, G. V. Pokhvisneva, and T. V. Ternikova, Izv. Akad. Nauk, Ser. Khim., 1994, 1452 [Russ. Chem. Bull., 1994, 43, 1376. (Engl. Transl.)].
- G. Ya. Kondrat'eva, N. E. Agafonov, and V. S. Bogdanov, Izv. Akad. Nauk SSSR, Ser. Khim., 1983, 1359 [Bull. Acad. Sci. USSR, Div. Chem. Sci., 1983, 32, 1231 (Engl. Transl.)].
- N. E. Agafonov, Izv. Akad. Nauk SSSR. Ser. Khim., 1987, 1132 [Bull, Acad. Sci. USSR. Div. Chem. Sci., 1987, 36, 1047 (Engl. Transl.)].
- 4. A. J. Hill and S. R. Aspinall, J. Am. Chem. Soc., 1939, 61, 822.
- A. V. Kirsanov and N. A. Kirsanova, Zh. Obshch. Khim., 1962, 32, 887 [J. Gen. Chem. USSR, 1962, 32 (Engl. Transl.)].

Received October 26, 1999; in revised form December 29, 1999